Let’s write and code and algorithm!
To average the online user reviews of the MIT Sloan / CSAIL AI online course.

Aurélie JEAN, PhD - aurelie@silicoveritas.com - @Aurelie_JEAN

UNICON Annual Hack - July 25th, 2018
Our MIT Sloan / CSAIL AI ONLINE COURSE
ARTIFICIAL INTELLIGENCE:
IMPLICATIONS FOR BUSINESS STRATEGY

ONLINE SHORT COURSE

Gain the knowledge and confidence to support the integration of AI into your organization.

Certificate Track: Management and Leadership
Goals and Challenges

Goals:

- Compute the average online reviews of all current and past users of the online course.
- Update the average on real time, accessible at anytime.
Goals and Challenges

Goals:
- Compute the average online reviews of all current and past users of the online course.
- Update the average on real time, accessible at anytime.

Challenges:
- Large amount of data.
- Real time computation.
Goals and Challenges

Goals:
- Compute the average online reviews of all current and past users of the online course.
- Update the average on real time, accessible at anytime.

Challenges:
- Large amount of data.
- Real time computation.

⇒ Write and Code an **Efficient Algorithm**
What is an algorithm?
15 minute session within groups of 5 people:

- Define what an algorithm is, in your own words.
- Provide 2 examples of algorithms.
What is an efficient algorithm?
FAST

MINIMIZE
NUMBER OF OPERATIONS

LOW MEMORY

MINIMIZE
Storage Memory
An example: simple average

When measuring the average over 2 reviews:

\[\text{Average} = \frac{R_1 + R_2}{2} \rightarrow 2 \text{ operations} \]

When measuring the average over 5 reviews:

\[\text{Average} = \frac{R_1 + R_2 + R_3 + R_4 + R_5}{5} \rightarrow 5 \text{ operations} \]

When measuring the average over \(N \) reviews:

\[\text{Average} = \frac{R_1 + R_2 + ... + R_N}{N} \rightarrow N \text{ operations} \]

Storage memory: 1 single value (decimal), the Average
An example: simple average

When measuring the average over 2 reviews:

\[\text{Average} = \frac{R_1 + R_2}{2} \rightarrow 2 \text{ operations} \]

When measuring the average over 5 reviews:

\[\text{Average} = \frac{R_1 + R_2 + R_3 + R_4 + R_5}{5} \rightarrow 5 \text{ operations} \]

When measuring the average over \(N\) reviews:

\[\text{Average} = \frac{R_1 + R_2 + \ldots + R_N}{N} \rightarrow N \text{ operations} \]

Storage memory: 1 single value (decimal), the Average
An example: simple average

When measuring the average over 2 reviews:

$$Average = \frac{R_1 + R_2}{2}$$

When measuring the average over 5 reviews:

$$Average = \frac{R_1 + R_2 + R_3 + R_4 + R_5}{5}$$

When measuring the average over N reviews:

$$Average = \frac{R_1 + R_2 + \ldots + R_N}{N}$$

Storage memory: 1 single value (decimal), the Average
An example: simple average

When measuring the average over 2 reviews:

\[
\text{Average} = \frac{R_1 + R_2}{2} \quad \rightarrow \quad 2 \text{ operations}
\]
An example: simple average

When measuring the average over 2 reviews:

\[\text{Average} = \frac{R_1 + R_2}{2} \rightarrow 2 \text{ operations} \]

When measuring the average over 5 reviews:

\[\text{Average} = \frac{R_1 + R_2 + R_3 + R_4 + R_5}{5} \rightarrow 5 \text{ operations} \]

Storage memory:
1 single value (decimal), the Average
An example: simple average

When measuring the average over 2 reviews:

\[\text{Average} = \frac{R_1 + R_2}{2} \rightarrow 2 \text{ operations} \]

When measuring the average over 5 reviews:

\[\text{Average} = \frac{R_1 + R_2 + R_3 + R_4 + R_5}{5} \]
An example: Simple Average

When measuring the average over 2 reviews:

\[
Average = \frac{R_1 + R_2}{2} \rightarrow 2 \text{ operations}
\]

When measuring the average over 5 reviews:

\[
Average = \frac{R_1 + R_2 + R_3 + R_4 + R_5}{5} \rightarrow 5 \text{ operations}
\]
AN EXAMPLE: SIMPLE AVERAGE

When measuring the average over 2 reviews:

\[
\text{Average} = \frac{R_1 + R_2}{2} \rightarrow 2 \text{ operations}
\]

When measuring the average over 5 reviews:

\[
\text{Average} = \frac{R_1 + R_2 + R_3 + R_4 + R_5}{5} \rightarrow 5 \text{ operations}
\]

When measuring the average over \(N\) reviews:
An example: simple average

When measuring the average over 2 reviews:

\[
\text{Average} = \frac{R_1 + R_2}{2} \rightarrow 2 \text{ operations}
\]

When measuring the average over 5 reviews:

\[
\text{Average} = \frac{R_1 + R_2 + R_3 + R_4 + R_5}{5} \rightarrow 5 \text{ operations}
\]

When measuring the average over N reviews:

\[
\text{Average} = \frac{R_1 + R_2 + \ldots + R_N}{N}
\]
An example: simple average

When measuring the average over 2 reviews:

\[\text{Average} = \frac{R_1 + R_2}{2} \rightarrow \text{2 operations} \]

When measuring the average over 5 reviews:

\[\text{Average} = \frac{R_1 + R_2 + R_3 + R_4 + R_5}{5} \rightarrow \text{5 operations} \]

When measuring the average over N reviews:

\[\text{Average} = \frac{R_1 + R_2 + \ldots + R_N}{N} \rightarrow \text{N operations} \]
An example: simple average

When measuring the average over 2 reviews:

$$Average = \frac{R_1 + R_2}{2} \quad \rightarrow 2 \text{ operations}$$

When measuring the average over 5 reviews:

$$Average = \frac{R_1 + R_2 + R_3 + R_4 + R_5}{5} \quad \rightarrow 5 \text{ operations}$$

When measuring the average over \(N\) reviews:

$$Average = \frac{R_1 + R_2 + ... + R_N}{N} \quad \rightarrow N \text{ operations}$$

Storage memory:
An example: simple average

When measuring the average over 2 reviews:

\[
\text{Average} = \frac{R_1 + R_2}{2} \quad \rightarrow \text{2 operations}
\]

When measuring the average over 5 reviews:

\[
\text{Average} = \frac{R_1 + R_2 + R_3 + R_4 + R_5}{5} \quad \rightarrow \text{5 operations}
\]

When measuring the average over \(N\) reviews:

\[
\text{Average} = \frac{R_1 + R_2 + \ldots + R_N}{N} \quad \rightarrow \text{N operations}
\]

Storage memory: 1 single value (decimal), the Average
In the case of the online review average of the MIT AI course?